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Background Results

» Spike synchrony is vital for spike propagation, but the role of synchrony for signal Result 1: Rodent LTMRs can be classified into four subtypes based on  Result 2: As stimulus frequency increases, changes in reliability differ
propagation between low threshold mechanoreceptors (LTMRs) and their post- their differential responses to vibration and sustained pressure per LTMR subtype but precision increases for all LTMRs.
synaptlc targets remains unclear.
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, - ,J, o Result 3: RA1b LTMRs have high precision at high frequencies, but Result 4: The GLM reproduces LTMR responses to vibration and
1. Characterize reliability and precision of LTMR responses to vibration. . . . . . . TONT
. . L . require phase alignment to achieve population synchrony. highlights key mechanistic differences between RA1b and SA LTMRs
2. Investigate the impact of changes in reliability and precision on synchrony
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A. Reliability Synchrony was assessed using raster plots (top) and firing
Measured as % Entrainment (100% = 1 spk/cycle): rate histograms (FRH, bottom): Concl USiOnS
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#of stimulus cycles/sec Shikes were abeled syne 1. Rodent LTMRs can be classified as SA, RAT1a, RA1b, or RA2 based on their differential responses to sustained pressure and vibration. Acknowledgements
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Time synchrony will be assessed at low—high frequencies across all LTMR subtypes. The GLM will be fit to RATa and RA2 LTMRs.



